این فایل به بررسی اثر خطای اتصالی در هادی های ctc می پردازد در فرمت word قابل ویرایش و در 90 صفحه می باشد .
بخشی از محتوای فایل دانلودی ::
طراحی ترانسفورماتور یعنی آماده سازی نقشههای اجرایی ترانسفورماتور اولین گام در ساخت آن است.
برای شروع کار محاسبه و طراحی حداقل مشخصات زیر باید ارائه شود:
قدرت نامی ترانسفورماتور
ولتاژهای فشار قوی و ضعیف و گروه برداری
امپدانس اتصال کوتاه، تلفات بی باری و بارداری
ارتفاع، دما، درصد رطوبت نسبی و آلودگی محیط نصب
استانداردها
در بعضی مواقع پارهای مشخصات ویژه نیز اعمال مینمایند به عنوان مثال محدودیت در چگالی شار یا چگالی جریان و یا محدودیت در ابعاد فیزیکی ترانسفورماتور. پس از دریافت اطلاعت و بر اساس مدارک موجود قسمت فعال ترانسفورماتور شامل سیم پیچیها، هسته و مواد عایقی محاسبه میوند.
مدارک و استانداردهای مورد استفاده دیگر عبارتند از VDE و DIN و IEC.
ترانسفورماتور طراحی شده را میتوان به دو گروه نرمال و ویژه تقسیم کرد:
– منظور از ترانسفورماتور نرمال ترانسفورماتور هایی میباشند که به طور گسترده در شبکه توزیع مصرف دارند و بدین جهت به طور گسترده تولید میشوند . ترانسفورماتورهای ۲۰۰kVA و ۱۰۰ ۵۰ و ۲۵ ، گروه برداری Yzn5 و نسبت ولتاژی ۲۰kV4%/0.4kV
– ترانسهای ویژه دارای شرایط خاصی هستند که توسط مشتری ارائه میشوند و تولیدی محدود دارند.
ترانسفورماتور های توزیع عموماً دارای سیستم خنک کنندگی ONAN و Tap changer به صورت Off Load میباشند که برای ردیف ۲۰ کیلوولت، سه پله و برای ردیف ۳۰ کیلو ولت، پنج پله میباشند.
۱-۲-طراحی
طراحی ترانسفورماتور یعنی اجرای محاسبات مکانیکی جهت دفع حرارت ناشی از تلفات و هم چنین آماده سازی نقشههای مکانیکی ترانسفورماتور. مراحل مختلف این کار عبارتند از:
–طراحی هسته
– طراحی ابعاد برد شامل انتخاب نبشیها یا تسمههای مناسب
– طراحی ساختمان جمعی سیم پیچیها
– سیم بندیهای فشار قوی و فشار ضعیف (در فشار ضعیف انتخاب شینههای انعطاف پذیر در توانهای بالا، خمکاری تسمههای خروجی از بوبین جهت تعیین ارتفاع، مهار تسمهها با استفاده از بستهای چوبی، تعیین حداقل فاصله تا مرکز بوشینگها و در فشار قوی با توجه به گروه برداری تعیین قطر و طول سیمهای اتصال دهنده فازها جهت ایجاد گروه برداری مناسب، انتخاب کلید تنظیم ولتاژ)
– طراحی در پوش با توجه به ابعاد و سوراخکاری برد
– طراحی مخزن شامل محاسبات مکانیکی جهت محاسبه تعداد، عمق، گام و ارتفاع و رلهها
۱-۳-آزمایش ها
یکی از مباحث مهم ترانسفورماتور آزمایش و تست ترانسفورماتور برای حصول اطمینان از کیفیت الکتریکی و حرارتی ترانسفورماتور میباشد. این آزمایشات طبق استاندارد IEC-60076 انجام میشود و به طور کلی به سه بخش تقسیم میشوند:
تستهای روتین – تستهای نوعی – تستهای ویژه
۱-۳-۱-تستهای روتین
اینگونه تستها، تستهای غیر مخرب میباشند و می بایست طبق استاندارد بر روی تمامی ترانسفورماتورها انجام گیرند. برای ترانسفورماتورهای توزیع این تستها عبارتند از :
– اندازه گیری نسبت تبدیل : این اندازه گیری در بی باری یعنی در حالتیکه ثانویه ترانسفورماتور مدار باز می باشد انجام می پذیرد در این حالت از افت ولتاژ ناشی از جریان بی باری میتوان صرفنظر کرد.
– گروه برداری: این تست با تست نسبت تبدیل تلفیق شده است چون در صورتیکه نسبت تبدیل درست باشد میتوان اطمینان پیدا کرد که گروه برداری هم مشکل نخواهد داشت.
– اندازه گیری مقاومت سیم پیچها: مقدار مقاومت سیم پیچ جزء مقادیر گارانتی شده از طرف سازنده نیست اما داشتن آن برای محاسبه تلفات بار در دمای ۷۵ درجه (مطابق استاندارد) و نیز برای تعیین میزان جهش حرارتی سیم پیچ در آزمایش لازم است. این اندازهگیری در دمای محیط انجام میپذیرد و با توجه به آنکه مقاومت سیم پیچ تابعی از دماست می بایست نتیجه اندازهگیری را به دمای ۷۵ درجه انتقال داد. لازم به ذکر است برای ثبت مقاومت اندازه گیری شده مقدار دما نیز باید ثبت شود.
– اندازه گیری شدت جریان و تلفات بی باری: هرگاه ترانسفورماتور تحت ولتاژ و فرکانس نامی قرار گیرد و طرف دیگر آن بی بار باشد تلفات حاصل در ترانسفورماتور را تلفات بی باری و جریانی که در اینحالت ترانسفورماتور میکشد را جریان بی باری مینامند. این تلفات و جریان برای هر ترانسفورماتور متصل به شبکه حتی در زمانی که از آن بارگیری نمیشود وجود دارد بنابراین با توجه به پیوسته بودن آن مقدار آن باید پایین و در محدوده گارانتی باشد. این تلفات شامل تلفات فوکو، هیسترزیس، ژولی و دی الکتریک میباشد که از بین این موارد دو مورد آخر با توجه به کوچکی قابل صرفنظر کردن می باشند. این تست از سمت فشار ضعیف انجام میشود و تلورانس تلفات بی باری ۱۵درصد و جریان بی باری ۳۰ درصد میباشد. موارد زیر در میزان جریان و تلفات بی باری موثر است: کیفیت ورقها، نحوه برش، هسته چینی و فاصله هوایی.
– اندازهگیری تلفات اتصال کوتاه: در این تست فشار ضعیف را اتصال کوتاه میکنند و ولتاژ فشار قوی را آنقدر افزایش میدهیم تا جریان نامی از آن عبور کند، در اینحالت میتوان گفت که در سمت فشار ضعیف نیز جریان نامی عبور می کند . در این آزمایش نیز با توجه به اینکه دمای محیط در مقدار مقاومت و در نتیجه تلفات بار تاثیر دارد دمای محیط می بایست ثبت شود و همچنین تلفات در دمای ۷۵ درجه محاسبه گردد. مقدار درصد ولتاژ اتصال کوتاه نیز با انتقال مقادیر بدست آمده به دمای ۷۵ درجه محاسبه میگردد. درصد امپدانس اتصال کوتاه برای ترانسفورماتورهای تا ۲۵۰kVA به منظور کاهش تلفات بار در شبکه ۴ درصد و برای تستهای بزرگتر جهت کاهش مقدار جریان اتصال کوتاه ۶ درصد میباشد.
۱-۱-مقدمه ۲
۱-۲-طراحی ۴
۱-۳-آزمایش ها ۵
۱-۴- محاسبات هسته ۹
۱-۵-ساختمان هسته ۱۳
فصل دوم : انواع سیم پیچی های ترانسفورماتور و ساختمان آنها ۱۴
۲-۱-مقدمه ۱۵
۲-۲-تعاریف ۱۵
۲-۲-۱ سیم پیچی ۱۵
۲-۲-۲ فاز ترانسفورماتور ۱۶
۲-۲-۳ جزء سیم پیچ ۱۶
۲-۲-۴-هادی موازی ۱۶
۲-۲-۵ انواع هادی ها ۱۸
۲-۲-۶ سیم پیچ با هادی های درهم شده ۱۹
۲-۴-ساختمان سیم پیچ های لایه ای ۳۱
فصل سوم : ساختار هادیهای CTC ۳۹
۳-۱-مقدمه ۴۰
۳-۲-معرفی هادی CTC ۴۱
۳-۳- ساختمان هادی CTC ۴۳
۳-۴- توصیفی از جابجایی Transposition ۴۶
۳-۵-بوبین ساخته شده از هادی CTC ۴۷
۳-۶-ابعاد هادی های CTC با عایق کاغذی ۴۷
۳-۷-بررسی اثر موقعیت خطا در بوبین ۵۱
۳-۷-۱ بررسی اثر موقعیت خطا در بوبین با هادی دو قلو ۵۲
۳-۸-مدل مداری هادی CTC ۵۸
۳-۸-۱- چگونگی بدست آوردن مقادیر اندوکتانس های هادی CTC ۵۸
۳-۸-۲-روش حل مدار در مدلسازی هادی CTC ۶۵
۳-۸-۳-بررسی علت عدم تعادل جریان در رشته های موازی ۶۸
۳-۹-نرم افزار CTCFMS ۷۰
فصل چهارم : نتایج عددی و تحلیل چند ترانسفورماتور نمونه ۷۴
تحلیل خطا در چند ترانسفورماتور نمونه ۷۵
فصل پنجم : نتیجه گیری و پیشنهادات ۸۱
۵-۱-نتایج کلی بدست آمده از پروژه ۸۲
۵-۲-پیشنهادات ۸۳
مراجع ۸۴
بخشی از محتوای فایل دانلودی ::
طراحی ترانسفورماتور یعنی آماده سازی نقشههای اجرایی ترانسفورماتور اولین گام در ساخت آن است.
برای شروع کار محاسبه و طراحی حداقل مشخصات زیر باید ارائه شود:
قدرت نامی ترانسفورماتور
ولتاژهای فشار قوی و ضعیف و گروه برداری
امپدانس اتصال کوتاه، تلفات بی باری و بارداری
ارتفاع، دما، درصد رطوبت نسبی و آلودگی محیط نصب
استانداردها
در بعضی مواقع پارهای مشخصات ویژه نیز اعمال مینمایند به عنوان مثال محدودیت در چگالی شار یا چگالی جریان و یا محدودیت در ابعاد فیزیکی ترانسفورماتور. پس از دریافت اطلاعت و بر اساس مدارک موجود قسمت فعال ترانسفورماتور شامل سیم پیچیها، هسته و مواد عایقی محاسبه میوند.
مدارک و استانداردهای مورد استفاده دیگر عبارتند از VDE و DIN و IEC.
ترانسفورماتور طراحی شده را میتوان به دو گروه نرمال و ویژه تقسیم کرد:
– منظور از ترانسفورماتور نرمال ترانسفورماتور هایی میباشند که به طور گسترده در شبکه توزیع مصرف دارند و بدین جهت به طور گسترده تولید میشوند . ترانسفورماتورهای ۲۰۰kVA و ۱۰۰ ۵۰ و ۲۵ ، گروه برداری Yzn5 و نسبت ولتاژی ۲۰kV4%/0.4kV
– ترانسهای ویژه دارای شرایط خاصی هستند که توسط مشتری ارائه میشوند و تولیدی محدود دارند.
ترانسفورماتور های توزیع عموماً دارای سیستم خنک کنندگی ONAN و Tap changer به صورت Off Load میباشند که برای ردیف ۲۰ کیلوولت، سه پله و برای ردیف ۳۰ کیلو ولت، پنج پله میباشند.
۱-۲-طراحی
طراحی ترانسفورماتور یعنی اجرای محاسبات مکانیکی جهت دفع حرارت ناشی از تلفات و هم چنین آماده سازی نقشههای مکانیکی ترانسفورماتور. مراحل مختلف این کار عبارتند از:
–طراحی هسته
– طراحی ابعاد برد شامل انتخاب نبشیها یا تسمههای مناسب
– طراحی ساختمان جمعی سیم پیچیها
– سیم بندیهای فشار قوی و فشار ضعیف (در فشار ضعیف انتخاب شینههای انعطاف پذیر در توانهای بالا، خمکاری تسمههای خروجی از بوبین جهت تعیین ارتفاع، مهار تسمهها با استفاده از بستهای چوبی، تعیین حداقل فاصله تا مرکز بوشینگها و در فشار قوی با توجه به گروه برداری تعیین قطر و طول سیمهای اتصال دهنده فازها جهت ایجاد گروه برداری مناسب، انتخاب کلید تنظیم ولتاژ)
– طراحی در پوش با توجه به ابعاد و سوراخکاری برد
– طراحی مخزن شامل محاسبات مکانیکی جهت محاسبه تعداد، عمق، گام و ارتفاع و رلهها
۱-۳-آزمایش ها
یکی از مباحث مهم ترانسفورماتور آزمایش و تست ترانسفورماتور برای حصول اطمینان از کیفیت الکتریکی و حرارتی ترانسفورماتور میباشد. این آزمایشات طبق استاندارد IEC-60076 انجام میشود و به طور کلی به سه بخش تقسیم میشوند:
تستهای روتین – تستهای نوعی – تستهای ویژه
۱-۳-۱-تستهای روتین
اینگونه تستها، تستهای غیر مخرب میباشند و می بایست طبق استاندارد بر روی تمامی ترانسفورماتورها انجام گیرند. برای ترانسفورماتورهای توزیع این تستها عبارتند از :
– اندازه گیری نسبت تبدیل : این اندازه گیری در بی باری یعنی در حالتیکه ثانویه ترانسفورماتور مدار باز می باشد انجام می پذیرد در این حالت از افت ولتاژ ناشی از جریان بی باری میتوان صرفنظر کرد.
– گروه برداری: این تست با تست نسبت تبدیل تلفیق شده است چون در صورتیکه نسبت تبدیل درست باشد میتوان اطمینان پیدا کرد که گروه برداری هم مشکل نخواهد داشت.
– اندازه گیری مقاومت سیم پیچها: مقدار مقاومت سیم پیچ جزء مقادیر گارانتی شده از طرف سازنده نیست اما داشتن آن برای محاسبه تلفات بار در دمای ۷۵ درجه (مطابق استاندارد) و نیز برای تعیین میزان جهش حرارتی سیم پیچ در آزمایش لازم است. این اندازهگیری در دمای محیط انجام میپذیرد و با توجه به آنکه مقاومت سیم پیچ تابعی از دماست می بایست نتیجه اندازهگیری را به دمای ۷۵ درجه انتقال داد. لازم به ذکر است برای ثبت مقاومت اندازه گیری شده مقدار دما نیز باید ثبت شود.
– اندازه گیری شدت جریان و تلفات بی باری: هرگاه ترانسفورماتور تحت ولتاژ و فرکانس نامی قرار گیرد و طرف دیگر آن بی بار باشد تلفات حاصل در ترانسفورماتور را تلفات بی باری و جریانی که در اینحالت ترانسفورماتور میکشد را جریان بی باری مینامند. این تلفات و جریان برای هر ترانسفورماتور متصل به شبکه حتی در زمانی که از آن بارگیری نمیشود وجود دارد بنابراین با توجه به پیوسته بودن آن مقدار آن باید پایین و در محدوده گارانتی باشد. این تلفات شامل تلفات فوکو، هیسترزیس، ژولی و دی الکتریک میباشد که از بین این موارد دو مورد آخر با توجه به کوچکی قابل صرفنظر کردن می باشند. این تست از سمت فشار ضعیف انجام میشود و تلورانس تلفات بی باری ۱۵درصد و جریان بی باری ۳۰ درصد میباشد. موارد زیر در میزان جریان و تلفات بی باری موثر است: کیفیت ورقها، نحوه برش، هسته چینی و فاصله هوایی.
– اندازهگیری تلفات اتصال کوتاه: در این تست فشار ضعیف را اتصال کوتاه میکنند و ولتاژ فشار قوی را آنقدر افزایش میدهیم تا جریان نامی از آن عبور کند، در اینحالت میتوان گفت که در سمت فشار ضعیف نیز جریان نامی عبور می کند . در این آزمایش نیز با توجه به اینکه دمای محیط در مقدار مقاومت و در نتیجه تلفات بار تاثیر دارد دمای محیط می بایست ثبت شود و همچنین تلفات در دمای ۷۵ درجه محاسبه گردد. مقدار درصد ولتاژ اتصال کوتاه نیز با انتقال مقادیر بدست آمده به دمای ۷۵ درجه محاسبه میگردد. درصد امپدانس اتصال کوتاه برای ترانسفورماتورهای تا ۲۵۰kVA به منظور کاهش تلفات بار در شبکه ۴ درصد و برای تستهای بزرگتر جهت کاهش مقدار جریان اتصال کوتاه ۶ درصد میباشد.
فهرست مطالب
فصل اول : آشنایی با مراحل کلی طراحی ترانسفورماتور ۱۱-۱-مقدمه ۲
۱-۲-طراحی ۴
۱-۳-آزمایش ها ۵
۱-۴- محاسبات هسته ۹
۱-۵-ساختمان هسته ۱۳
فصل دوم : انواع سیم پیچی های ترانسفورماتور و ساختمان آنها ۱۴
۲-۱-مقدمه ۱۵
۲-۲-تعاریف ۱۵
۲-۲-۱ سیم پیچی ۱۵
۲-۲-۲ فاز ترانسفورماتور ۱۶
۲-۲-۳ جزء سیم پیچ ۱۶
۲-۲-۴-هادی موازی ۱۶
۲-۲-۵ انواع هادی ها ۱۸
۲-۲-۶ سیم پیچ با هادی های درهم شده ۱۹
۲-۴-ساختمان سیم پیچ های لایه ای ۳۱
فصل سوم : ساختار هادیهای CTC ۳۹
۳-۱-مقدمه ۴۰
۳-۲-معرفی هادی CTC ۴۱
۳-۳- ساختمان هادی CTC ۴۳
۳-۴- توصیفی از جابجایی Transposition ۴۶
۳-۵-بوبین ساخته شده از هادی CTC ۴۷
۳-۶-ابعاد هادی های CTC با عایق کاغذی ۴۷
۳-۷-بررسی اثر موقعیت خطا در بوبین ۵۱
۳-۷-۱ بررسی اثر موقعیت خطا در بوبین با هادی دو قلو ۵۲
۳-۸-مدل مداری هادی CTC ۵۸
۳-۸-۱- چگونگی بدست آوردن مقادیر اندوکتانس های هادی CTC ۵۸
۳-۸-۲-روش حل مدار در مدلسازی هادی CTC ۶۵
۳-۸-۳-بررسی علت عدم تعادل جریان در رشته های موازی ۶۸
۳-۹-نرم افزار CTCFMS ۷۰
فصل چهارم : نتایج عددی و تحلیل چند ترانسفورماتور نمونه ۷۴
تحلیل خطا در چند ترانسفورماتور نمونه ۷۵
فصل پنجم : نتیجه گیری و پیشنهادات ۸۱
۵-۱-نتایج کلی بدست آمده از پروژه ۸۲
۵-۲-پیشنهادات ۸۳
مراجع ۸۴
این فایل به بررسی اثر خطای اتصالی در هادی های ctc می پردازد در فرمت word قابل ویرایش و در 90 صفحه می باشد .